Увеличение числа входов дифференциальных каскадов, как это было показано ранее, приводит к снижению коэффициента ослабления синфазного сигнала, причем он может зависеть от требуемого количества входов. Кроме этого, необходим поиск особенностей функционально-топологиче-ских принципов введения в схему дополнительных (компенсирующих) обратных связей и, следовательно, анализ основных свойств электронных схем с МОУ.
Для решения поставленной задачи воспользуемся обобщенной структурой электронных схем с МОУ (рис. 5).
Рис. 5. Обобщенная структура с мультидифференциальными ОУ
Из векторного сигнального графа (рис. 6) этой структуры следует система векторно-матричных уравнений:
(21)
Смысл векторов следует из рис. 6. Векторы
,
размерностью N´1 описывают расщепитель входного сигнала x0 и связывают его с инвертирующим (-) и неинвертирующим (+) входами
мультидифференциальных ОУ
. Матрицы
,
образованы локальными пе-редаточными функциями пассивной подсхемы, обеспечивающей передачу и преобразование сигнала со входа i-го активного элемента на j-й инвертирующий или неинвертирующий входы l-го МОУ. Активные элементы описываются диагональными матрицами размера (N´N):
, (22)
компоненты которых являются передаточными функциями i-го МОУ по j-му инвертирующему (-) и неинвертирующему (+) входам.
Рис. 6. Векторный сигнальный граф обобщенной структуры
Связь выходов активных элементов с нагрузкой осуществляется через сумматор, локальные передачи которого образуют вектор T = [ti] размера (N´1). Для учета влияния ослабления синфазного сигнала по различным входам введем в общем случае функции:
, (23)
характеризующих неидентичность каналов усиления входного сигнала. Тогда
(24)
(25)
Решение системы (21) приводит к следующему вектору выходных сигналов МОУ:
, (26)
где (27)
; (28)
; (29)
. (30)
Из (26) может быть получена передаточная функция любого электронного устройства с МОУ:
. (31)
Реально коэффициенты ослабления синфазного сигнала достаточно велики, поэтому при анализе их влияния на функцию (31) можно исключить мультипликативные составляющие, представляющие собой величины второго порядка малости.
Рассмотрим влияние j-го коэффициента для инвертирующего входа i-го активного элемента. Индекс j соответствует номеру матрицы:
. (32)
Тогда по методу Дуайра и У0 [2] (метода пополнения при обращении матрицы) получим:
, (33)
где .
Следовательно,
. (34)
В выражении (34)
(35)
является локальной передаточной функцией системы при подаче сигнала на j-й вход i-го активного элемента, представляет собой передаточную функцию при условии, что вектор Т образован компонентами i-й строки матрицы , а
(36)
является передаточной функцией системы при подаче сигнала на j-й вход i-го МОУ при условии, что вектор Т образован указанным выше способом.
Аналогичный результат получается и для . Однако, как это следует из (27) и (28), в соответствующих выражениях необходимо изменить знак слагаемых. С учетом структуры вектора (28) полное приращение передаточной функции системы будет иметь следующий вид
Проектирование локальной вычислительной сети управления систем связи и телекоммуникаций
Локальные вычислительные сети управления систем связи и телекоммуникаций на сегодняшний день довольно актуальны. Наличие в офисе ЛВС создает для ее пользователей новые возможности интегрального характера. Объединение устройств в сеть п ...
Компромиссы при использовании модуляции и кодирования
Системные компромиссы ‑ это неотъемлемая часть всех разработок цифровых систем связи.
Разработчик должен стремиться к 1) увеличению скорости передачи бит R до максимально возможной; 2) минимизации вероятности появле ...
Статическая модель системы частотной автоподстройки частоты
Радиопередающие устройства (РПдУ) применяются в сферах
телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации.
Стремительное развитие микроэлектроники, аналоговой и цифровой
микросхемотехники, микропроц ...